MAYO CLINIC

RESPIRATORY MUSCLE DYSFUNCTION IN CHRONIC DISEASE STATES:

CLINICAL IMPORTANCE AND IMPLICATIONS FOR CARDIOPULMONARY REHABILITATION

ISCVPR ANNUAL MEETING INDIANAPOLIS, IN THURSDAY APRIL 25TH, 2024

1

SESSION LEARNING OBJECTIVES

Learning objective 1: Compare different techniques used to assess respiratory muscle function and understand the metrics used to define respiratory muscle dysfunction.

Learning objective 2: Identify the prevalence and clinical importance of respiratory muscle dysfunction in different cardiopulmonary disease states.

Learning objective 3: Evaluate the potential role for specific respiratory muscle training as a rehabilitative strategy in patients undertaking phase II cardiopulmonary rehabilitation.

Learning objective 4: Recognize the practical considerations for including respiratory muscle function assessment and specific inspiratory muscle training in the phase II cardiopulmonary rehabilitation setting.

2

INSPIRATORY MUSCLE WEAKNESS & DYSFUNCTION:

CLINICAL SIGNIFICANCE & HOW TO MEASURE IT

BRYAN J. TAYLOR, PHD, FACSM CONSULTANT ASSISTANT PROFESSOR OF MEDICINE DEPARTMENT OF CARDIOVASCULAR MEDICINE MAYO CLINIC FLORIDA

NO DISCLOSURES

4

WHAT IF I SAID ...

5

LEARNING OBJECTIVES

Learning objective 1: Identify the key muscles of breathing; understand their basic structure and function.

Learning objective 2: Define respiratory muscle dysfunction and weakness. Identify the clinical importance of inspiratory muscle dysfunction in different cardiopulmonary disease states.

Learning objective 3: Compare different techniques used to assess inspiratory muscle function and understand the metrics used to define respiratory muscle dysfunction.

THE RESPIRATORY MUSCLES

<section-header><complex-block><complex-block>

8

7

2 INSPIRATORY MUSCLE WEAKNESS & DYSFUNCTION

WEAKNESS & DYSFUNCTION

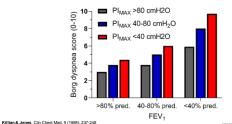
ANY PROCESS THAT INTERFERES WITH DIAPHRAGMATIC INNERVATION, CONTRACTILE MUSCLE FUNCTION, OR MECHANICAL COUPLING TO THE CHEST WALL.

Lung hyperinflation Mechanical weakening of the diaphragm (e.g., COPD)

Paralysis & elevation ⚠ Unilateral or bilateral; neurologic or trauma (phrenic nerve)

10

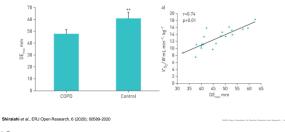
Increased oxidative stress, increased


Diaphragm weakness, dysfunction Decreased muscle mass, contractility (thickening), excursion (motility) ß

WHAT IS THE CLINICAL SIGNIFICANCE OF **INSPIRATORY MUSCLE WEAKNESS & DYSFUNCTION?**

11

WEAKNESS & DYSFUNCTION: CLINICAL SIGNIFICANCE

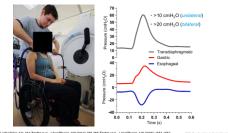

GREATER BREATHLESSNESS DURING EXERCISE WITH LOWER INSPIRATORY MUSCLE STRENGTH

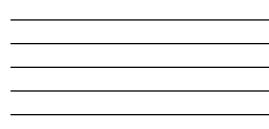
4/23/2024

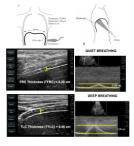

WEAKNESS & DYSFUNCTION: CLINICAL SIGNIFICANCE

REDUCED DIAPHRAGM MOTILITY RELATED TO DECREASED EXERCISE CAPACITY IN COPD

WEAKNESS & DYSFUNCTION: CLINICAL SIGNIFICANCE




Hamazaki et al., Respiratory Medicine, 161 (2020); 105834


ASSESSING THE DIAPHRAGM EVOKED DIAPHRAGM TWITCH PRESSURE

16

ASSESSING THE DIAPHRAGM ULTRASOUND IMAGING

End-expiratory thickness > LLN 0.15 cm Thickening fraction > LLN 20-30% > Frequently >100% Excursion (deep breath) LLN 3.6 cm (female)
LLN 4.7 cm (male)

17

Idiopathic Cause considered unknown; ~20% of cases Traumatic

Cardiothoracic surgery; freezing injury due to necessary cooling; direct trauma (e.g., CABG)

Unilateral elevation of *right* hemidiaphragm >2 cm higher than left

INVASIVE, COSTLY, TIME-CONSUMING, REQUIRES EXPERT TRAINING & COMPLICATED ANALYSIS; NOT WELL SUITED TO ROUTINE ASSESSMENT IN CR & PR...

ASSESSING THE DIAPHRAGM MAXIMAL INSPIRATORY PRESSURE

Simple
 Non-invasive
 Quick
 Cost-effective

Smith & Taylor, Prog Cardiovasc Dis, 70 (2022); 49-57

20

19

MAXIMAL INSPIRATORY PRESSURE PRACTICAL CONSIDERATIONS

- Volitional Patient encouragement required
- Constant State Sta
- Sustained' effort
 MIP recorded as highest
 over 1 s (maintain for ~3-4 s)
- O Posture Seated, upright, no 'holding on'
 - Practice & warm-up Learn correct technique; warm-up improves reliability
 - ✓ Acceptable reproducibility Highest value from 3 efforts that vary by ≤10%

MAXIMAL INSPIRATORY PRESSURE

PRACTICAL CONSIDERATIONS; WHAT IS NORMAL?

CAUTION WHEN USING PREDICTIVE EQUATIONS WHEN CONSIDERING WHAT IS NORMAL RODRIGUES ET AL., CHEST, 152 (2017); 32-39...

- PREVALENCE OF WEAKNESS RANGED FROM 33.4 TO 66.9% (6 EQNS)
- THE CHOICE OF MIP REFERENCE VALUES STRONGLY IMPACTS ON THE PREVALENCE OF WEAKNESS

22

MAXIMAL INSPIRATORY PRESSURE

PRACTICAL CONSIDERATIONS; WHAT IS NORMAL?

		MEN	wo	DMEN
Age, y	Studies/sample size	MIP, cmH ₂ O (95% CI)	Studies/sample size	MIP, cmH2O (95% CI)
18-29	6/96	128 (116-140)	6/92	97 (89-105)
30-39	6/69	129 (119-139)	6/66	89 (85-94)
40-49	6/72	117 (105-129)	6/71	93 (78-107)
50-59	5/61	108 (99-118)	5/60	78 (75-85)
60-69	5/65	93 (85-101)	5/66	75 (67-83)
70-83	5/63	76 (66-86)	5/59	65 (58-73)

Pessoa et al., Can Respir J, 21 (2014); 42-501562. 249-261

23

MAXIMAL INSPIRATORY PRESSURE

PRACTICAL CONSIDERATIONS; WHAT IS NORMAL?

Age (yrs)	PImax (cmH ₂ O)				
	Men'		Women*		
< 40	63		58		
40-60	55	Associated with "higher"	50		
61-80	47	likelihood of inspiratory muscle weakness	43		
> 80	42	Indacie weakitess	38		
MIP of ≥80 c	mH ₂ O (<i>males</i>) c	or ≥70 cmH₂O (<i>fem</i> nt inspiratory muso	ales) thought to		

SUMMARY

INTERIM

associated with dyspnea, exercise intolerance, & prognosis in CVD and chronic lung disease • Maximal inspiratory pressure is the most viable method for standard assessment of inspiratory

Inspiratory muscle weakness & dysfunction is

muscle function in CR & PR

25

MAYO CLINIC

INSPIRATORY MUSCLE WEAKNESS IN CR/PR: PREVALENCE AND REHABILITATIVE STRATEGIES

JOSHUA SMITH, PHD ASSISTANT PROFESSOR OF MEDICINE DEPARTMENT OF CARDIOVASCULAR MEDICINE MAYO CLINIC (ROCHESTER, MN)

26

DISCLOSURES

No disclosures

OVERVIEW

- Prevalence of inspiratory muscle weakness in CR and PR populations?
- Impact of exercise-based CR and PR on inspiratory muscle function
- Addition of inspiratory muscle training on inspiratory muscle function in the CR/PR setting
- Practical guidance for inspiratory muscle training in the CR/PR setting

28

PREVALENCE OF INSPIRATORY MUSCLE WEAKNESS

29

WHAT IS THE PREVALENCE OF INSPIRATORY MUSCLE WEAKNESS IN CR & PR?

INSPIRATORY MUSCLE WEAKNESS IN CR & PR

Study	Population	N=	Measure (vs CTL)	Prevalence
Hamazaki, 2020	HFrEF	445		MIP <70% pred; ~43%
Hamazaki, 2020	HFpEF	578		MIP <70% pred; ~39%
Miyagi, 2018	HFr/pEF	77	Ultrasound; dia. thickness @ TLC	<4.0 mm; ~44%
Meyer, 2001	HFrEF	244	MIP: 77 ± 34 vs. 107 ± 38 cmH ₂ O	
Fernandes, 2018	HTxp	23	MIP; 60 ± 30 cmH ₂ O (~48-55% pred)	

Inspiratory muscle weakness is associated with all-cause and CV mortality in HFrEF and HFpEF.

31

INSPIRATORY MUSCLE WEAKNESS IN CR & PR

Study	Population	N=	Measure (vs CTL)	Prevalence
Stein, 2009	CABG	20	MIP; 65 ± 16 cmH ₂ O (60% pred.)	
Morsch, 2009	CABG	108	MIP; 66 ± 29 cmH ₂ O	
Palaniswamy, 2010	Valve	20	MIP: 51 ± 10 cmH ₂ O (~49% pred.)	

The values above are pre-surgery. CABG and heart valve surgeries are associated with a ~17-36% reduction in inspiratory muscle strength and can persist for several weeks to months.

32

INSPIRATORY MUSCLE WEAKNESS IN CR & PR

Study	Population	N=	Measure (vs CTL)	Prevalence
Kofod, 2019	COPD	97	MIP: 63 vs. 76 cmH ₂ O	MIP <50% pred; ~10% MIP <60 cmH ₂ O; ~40%
Basso-Vanelli, 2016	COPD	25	MIP: 64 ± 17 cmH ₂ O (67% pred.)	

Evidence that inspiratory muscle weakness in COPD is associated with hyperinflation and contributes to hypercapnia, dyspnea, and exercise intolerance in these patients.

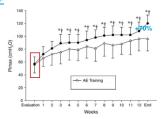
Gosselink et al., Eur Respir J, 37 (2011); 416-425

REHABILITATIVE STUDIES

34

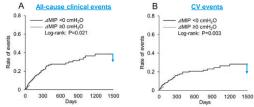
CAN EXERCISE TRAINING IN THE CR/PR SETTING

IMPROVE INSPIRATORY MUSCLE FUNCTION?


35

AEROBIC TRAINING AEROBIC EXERCISE IN HEREE

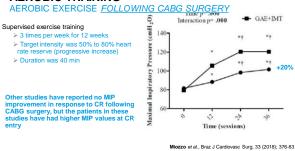
Supervised exercise training


b Times precise training
 b Times preveck for 12 weeks
 Farget intensity was heart rate at first ventilatory threshold
 Duration was 20 min and progressed to 45 min

Other studies have reported a smaller MIP increase (~15%) with baseline MIP likely significantly contributing to the degree of MIP improvement

Winkelmann et al., Am Heart J, 158 (2009); 768

AEROBIC TRAINING



Any CR-induced increase in MIP is associated with lower rates of all-cause and CV events in HFrEF

Hamazaki et al., J Clin Medicine, 9 (2020); 952

AEROBIC TRAINING

AEROBIC TRAINING

AEROBIC EXERCISE FOLLOWING CABG SURGERY

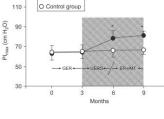
Taken together, these findings provide evidence that exercise training in the CR setting elicits improvements in MIP in HFrEF and following CABG with those patients exhibiting inspiratory muscle weakness likely exhibiting the greatest increases in inspiratory muscle function.

Miozzo et al., Braz J Cardiovasc Surg, 33 (2018); 376-83

AEROBIC TRAINING

AEROBIC EXERCISE IN COPD

> 3 times per week for 12 weeks


> General exercise reconditioning program

ED)

Pl_{max} (

- Duration was 1.5 hours including endurance exercise and strength training

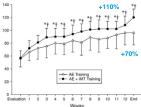
These findings are consistent with other studies finding minimal increases in MIP with PR in patients with COPD

Magadle et al., Respir Med, 101 (2007); 1500-1505

EFFECT OF EXERCISE TRAINING & INSPIRATORY MUSCLE TRAINING (IMT) ON INSPIRATORY MUSCLE FUNCTION AND EXERCISE CAPACITY

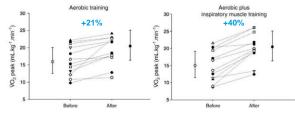
41

AEROBIC/INSPIRATORY MUSCLE TRAINING


AEROBIC EXERCISE VS. AEROBIC EXERCISE PLUS IMT IN HFREF

Plmax

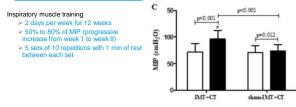
> Duration was 30 min per session


Other studies in HFrEF without inspiratory muscle weakness have found no additional benefit in inspiratory muscle strength with INT, but these patients did exhibit greater improvements in quality of life and dyspnea than exercise training alone.

Winkelmann et al., Am Heart J. 158 (2009): 768

AEROBIC/INSPIRATORY MUSCLE TRAINING

AEROBIC EXERCISE VS. AEROBIC EXERCISE PLUS IMT IN HFREF

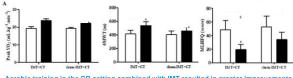


Winkelmann et al., Am Heart J, 158 (2009); 768

43

AEROBIC/INSPIRATORY MUSCLE TRAINING

AEROBIC EXERCISE VS. AEROBIC EXERCISE PLUS IMT FOLLOWING CABG SURGERY

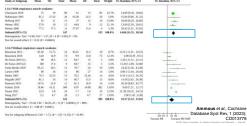


Santos et al., Int J Cardiol, 279 (2019); 40-46

44

AEROBIC/INSPIRATORY MUSCLE TRAINING

AEROBIC EXERCISE VS. AEROBIC EXERCISE PLUS IMT FOLLOWING CABG SURGERY


Aerobic training in the CR setting combined with IMT resulted in greater improvements in VO₂peak, 6-minute walk, and quality of life following CABG surgery.

Santos et al., Int J Cardiol, 279 (2019); 40-46

AEROBIC/INSPIRATORY MUSCLE TRAINING

AEROBIC EXERCISE VS. AEROBIC EXERCISE PLUS IMT IN <u>COPD</u>

46

3 PRACTICAL GUIDANCE

47

INSPIRATORY MUSCLE TRAINING

PRACTICAL GUIDANCE

Adjunct therapy Inspiratory muscle function, breathlessness, exercise capacity (?)

Three primary modalities Hyperpnea, 'fixed' resistive loading, pressure threshold loading**

Consider baseline MIP Intervention most effective in those with existing inspiratory muscle weakness (MIP <60 cmH₂O)

OPTIMAL IMT PRESCRIPTION?

<u>'Standard'</u>

- 2 × 30 dynamic efforts
- 6-to-7 days per week
- 4-to-10+ weeks
- ~50% of MIP
- Progression
 - Periodically increase load such that completion of 30 breaths approximates limit of inspiratory muscle tolerance

'High-intensity'

- 2-min loaded inspirations, 1-min recovery
- Repeat 7 times
- · 3-to-5 days per week
- ~8 weeks
- Start 'low' (~20-30% MIP)
- Progress to ~70% by 3rd or 4th session; further increase load such that final 2 min of session 'only just' completed

49

INSPIRATORY MUSCLE TRAINING PRACTICAL GUIDANCE

Consider baseline MIP

Intervention (ExT and/or IMT) most effective in those with existing inspiratory muscle weakness (MIP <60 cmH₂O)

50

INTERIM SUMMARY (PART II)

- Inspiratory muscle weakness is prevalent in heart failure and COPD.
- The prevalence of inspiratory muscle weakness in patients with other indications to CR (e.g., stable angina) is needed.
- Exercise-based CR and PR with/without IMT may improve inspiratory muscle function, physiological responses, and clinical outcomes.
- Evidence suggests that patients with inspiratory muscle weakness may exhibit the most benefit from exercise-based CR and PR with/without IMT.

MAYO CLINIC

CASE PRESENTATION: DIAPHRAGM DYSFUNCTION AFTER AORTIC VALVE REPLACEMENT

CRAIG P. STONE, CEP CLINICAL EXERCISE PHYSIOLOGIST CARDIOPULMONARY REHABILITATION & CV STRESS CENTER DEPARTMENT OF CARDIOVASCULAR MEDICINE MAYO CLINIC FLORIDA

52

PHASE II CR FOLLOWING AVR: CASE PATIENT

Phase II CR
25 total sessions
over 15 weeks with
5 week 'break' due
to work & family
commitments

 \Im

53

PHASE II CR FOLLOWING AVR: CASE PATIENT

54-YEAR-OLD MALE

	Rest	6MWT
Weight, Ibs	288	
BMI, kg/m ²	35.1	
Heart rate, bpm	75	90
BP, mmHg	156/64	198/84
SpO ₂ , %	97	95
RPE		9
Distance, ft		1,402
Speed, mph		2.6
METS		3
ECG	NSR, no ectopy	NSR, no ectopy

CLINICAL COURSE

- Complaints of dyspnea after surgery, thought to be related to post-op deconditioning
- Pt was able to complete 30 min of seated aerobic exercise during his rehab sessions with minimal complaints of dyspnea
- Dyspnea worsened during resistance training
- Coached patient in proper breathing technique during resistance training without any symptom improvement

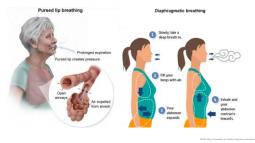
55

PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE

- Patient was absent from rehab for 5 weeks due to family/work commitments
- Returned with persistent/worsening dyspnea, especially during resistance exercise prompted review of medical history with emphasis on the patients' pulmonary history
- Multifactorial breathlessness in setting of obesity, weight gain, postoperative deconditioning
- Weight gain after CR 'break' (296 lbs, +8 lbs)

56

PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE


latrogenic right hemidiaphragm paralysis & elevation

Injury to the phrenic nerve during cardiac surgery

HOW DID WE MANAGE THE PATIENT IN CR?

PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE

59

PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE

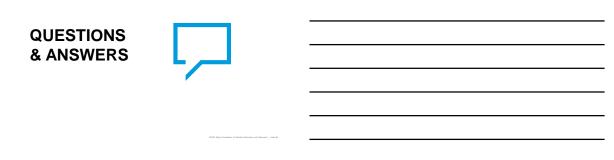
PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE

23 total sessions over 15 weeks	Before CR (rest)	After CR (rest)	Δ
Weight, Ibs	288	292	+4
BMI, kg/m ²	35.1	35.5	+0.4
Heart rate, bpm	75	82	
BP, mmHg	156/64	122/60	-34/4
SpO ₂ , %	97	96	
ECG	NSR, no ectopy	NSR, no ectopy	

61

PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE

23 total sessions over 15 weeks	Before CR (6MWT)	After CR (6MWT)	Δ
Heart rate, bpm	90	109	
BP, mmHg	198/84	148/66	
SpO ₂ , %	95	98	
RPE	9	15	
Distance, ft	1,402	1,620	+218
Speed, mph			+0.5
METS			+0.3
ECG	NSR, no ectopy	NSR, no ectopy	



62

PHASE II CR FOLLOWING AVR: CASE PATIENT 54-YEAR-OLD MALE

